

Project Risk Mitigation by Test
Cases

Pere Tumbas
 Predrag Matković

 Dušan Bobera

Article Info:

Management Information Systems,
Vol. 3 (2008), No. 2,

pp 025-028

Received 12 Jun 2008
Accepted 24 October 2008

UDC 004.413.4:[005.52:005.334

 Summary

Software product testing represents a key point at which software anomalies are
discovered and thus induces their removal. One can safely say that discovering
software product anomalies is an easier task that removing them. The later the
moment in the software development process at which the anomalies are discovered,
the more complex the removal of these anomalies is. The side effects of the
discovered errors are unpredictable and it is necessary to find them as early in the
software development process as possible. Use Case Guided Software Testing is the
topic of this paper. The paper is concerned with the theoretical aspects of setting Test
Cases based on Use Cases.

Key words

Test Case, UML, Use Case, RUP

Introduction

Historically, the characteristics of progress
throughout the development models has been
directly linked to reducing the time gap between
the making and the discovery of errors in the
software, lowering the risks in the software project
that way. The key drawback of software
development based on the waterfall model is
exactly this time gap among origin error and
detection error. Full completion of one
development phase as a condition for another to
begin, forces a conclusion that testing must be
done on the product in whole. Most errors made in
previous phases are often discovered only in the
testing phase and the removal of these errors in
order to satisfy user needs presents a significant
blow to the project’s budget and schedule. This
type of testing is necessary due to the nature of the
waterfall model itself. The paralleled time and
content dimensions of the project is the key
disadvantage of the waterfall model.

Based on the criticism of the waterfall model, a
software development process based on iterative
and incremental principles was developed. Instead
of the previous division of the solution into
separate parts, there came a shift into division the
problem into separate parts. The time dimension
was also separated from the content dimension,
and that way the development process was divided
into several iterations performed again based on a
set of smaller waterfalls. The key effect of this risk
prevention was achieved by significantly shortening
the time gap between error inception and error
discovery. The user was also a lot more actively

included in the software development process,
which further reduced the risks.

Unified Process, as a framework for object
oriented software development process is based
precisely on these iterative and incremental
principles. Division the problem into parts in order
to achieve iterativity in the UP was done by the use
of Use Cases, key artifacts which guide the whole
development process. The conclusion is thus that
software testing in the Unified Process is also
guided by Use Cases.

Use Case Guided Software Testing is the topic
of this paper. The paper is concerned with the
theoretical aspects of setting Test Cases based on
Use Cases. The paper first defines the connection
between user needs, system features, software
requirements and software functionality testing.
Conclusions and recommendations for successful
testing guided by Use Cases are outlined at the end
of the paper. Presentation of software
requirements and their processing as well as setting
the Test Cases in this paper was done using Unique
Modeling Language (UML).

1. Position of the Testing and Project
Management Disciplines in Rational
Unified Process

Rational Unified Process defines the complete
software development as a development process
guided by Use Cases Testing as an RUP Discipline
entirely fits this development model. Test Cases
with clearly defined testing rules are defined based
on Use Cases. For a broader problem definition

Pere Tumbas, Predrag Matković, Dušan Bobera

 26 Management Information Systems
2/2008

analyzed in this paper, the following Figures will
show the position of creating Test Cases according
to RUP. Figure 1 depicts the architecture of the
Rational Unified Process. A close look at this
Figure shows that testing represents one of the
basic disciplines (the first six disciplines), and that
it stretches over most of the duration of the
project. This supports the hypotheses mentioned in
the introduction:

a) Continuous testing shortens the time gap
between the inception and the discovery of
the anomaly in the project,

b) The user is constantly involved in the
development project, as well as a significant
part of testing.

Figure 1 Rational Unified Process Architecture
(Source: Rational Unified Process for Large Projects, IBM, 2005.)

All this supports the key intention of the

Rational Unified Process to early prevent large
risks, therefore significantly increasing the
probability of success for the development project.
Rational Unified Process shows the content of
each of the development disciplines in a clear and
visual way by using workflows. The testing
discipline workflow according to RUP is shown in
Figure 2.

The workflow of the testing discipline shows
activities performed during testing. The complexity
of the testing discipline is clearly visible in the
figure. This is supported by numerous research
stating the conclusion that the testing discipline
makes up for thirty to fifty percent of the total
project costs. Even with the high cost, users are
constantly critical of software testing. Their
criticism is constantly directed at the software not
having been tested sufficiently before delivery.
Since none of the claims (testing costs and
insufficiency) can be refuted, the complexity of
testing is only thereby emphasized.

Besides testing insufficiency, empirically, the
following claims about the testing process are
implied: Testing is mostly done without a clearly
defined methodology; Testing tools are rarely used.

The validity of these claims jeopardizes the
development project, and the more security
demanding the projects are, the more jeopardy
there is for core business operations that are
supported by the software product tested that way.
Producing an air traffic control system, a software
that controls medical equipment, all kinds of
financial software products are just some projects
that demand a serious approach to the testing
process. That is why RUP devotes great
significance to the testing process, trying to
circumvent the above claims.

Figure 2 Test Discipline Workflow according to RUP
(Source: Rational Unified Process for Large Projects, IBM, 2005.)

2. Defining Details and Traceability of
the Test Case

Activities shown in Figure 2 are testing activities at
the highest level of abstraction. Specific activities
appear in the form of a multitude of sub-activities
performed by specific roles, members involved in
the testing process. Different artifacts appear as
inputs and outputs for specific activities.

Defining the details of a Test Case represents
one of the activities performed in the testing
discipline within the top-level activity Test and
Evaluate. The Test Analyst is in charge of
performing this activity. This activity defines the
testing algorithms for each of the tested
functionalities separately. The following artifacts
appear as inputs for this activity1

1 Source: Rational Unified Process for Large Projects, IBM,
2005.

: Test Strategy,

Project Risk Mitigation by Test Cases

 Management Information Systems
2/2008 27

Test-Ideas List, Test Data, Use Case,
Supplementary specification, Change request and
Design Use Case Realization.

Test Strategy, Test-Ideas List and Test Data are
artifacts created in the testing discipline. The rest
of the artifacts are created in the requirements and
the analysis and design disciplines. As mentioned
before, the RUP defines complete development as
a development process guided by Use Cases. Use
Cases are software requirements structured based
on the identified user needs, the analysis of the
current state of the business system, and the
analysis of the existing information system. On one
hand, they are a contract between the investor and
the contractor, since they define the scope of the
future project, but on the other, they are the
guidelines for all the participants in the process.
Therefore, Use Cases tell users what to expect
from the future software product, tell development
engineers what to develop, tell people in charge of
documenting things what to document, and tell
testers what to test. Since Use Cases assume the
functionalities of the future system defined by user
demands, it is entirely logical that they appear as an
input in defining the details of Test Cases.

Use Cases are presented through Use Case
diagrams, one of the thirteen official UML
diagrams. Use Case diagrams are a broad and not
too detailed („mile wide inch deep“) representation
of system functionality. Actually, one can say that
Use Case diagrams define the scope of the system.
These diagrams are supposed to answer the
question of what the system does. The syntax used
in UML notation for this purpose is very modest
and easy to understand. However, that does not
mean these diagrams are easy to concoct. Quite
the contrary, making the Use Case diagrams is
extremely complex and takes a lot of time and
discussion until a satisfying solution can be made.
Elements used to design them are Actors, Use
Cases and relations which link the elements
together. Every Use Case represents a separate,
fully executable functionality of the system.
Exceptions to this rule are Use Cases linked by
content relations. This trait allows for creating Test
Cases based on Use Cases.

Every Use Case represents a functionality of the
future system that can be executed in a number of
ways. There is always one, so-called basic scenario,
which performs the exact thing the functionality
was designed for. Examples of this may include:

 Use Case: Withdrawing cash from an ATM
 Basic scenario: Cash successfully
withdrawn from the ATM

 Use Case: Submitting an application for
membership Basic scenario: Membership
application successfully submitted

ActivityInitial

Action1

Action2

Action3

Action4

Action5

Action6

Action7

ActivityFinal

ActivityFinal

B
A

SI
C

 F
LO

W

A
LT

ER
N

A
TE

FL

O
W

 1

A
LT

ER
N

A
TE

FL

O
W

 2

Figure 3 Basic Flow of Events and Alternate Flows of
Events for a Use Case

Besides the basic scenario, there are also a lot of

other scenarios which could execute the
functionality of Use Cases. All these other
scenarios which are able to execute the Use Case
functionality are called alternative scenarios. For
the testing process, it is essential to accurately
perceive all the potential scenarios and include
them in Test Cases.

The process of creating Test Cases is done in
the following three steps2

 For each Use Case all potential scenarios are
defined,

:

 For each scenario at least one Test Case and
conditions for the execution of the scenario
are defined,

 For each Test Case the inputs and outputs
are defined, based on which the testing will
be performed.

Since UML version 2.0, activity diagrams have
considerably improved, thereby creating a basis for
a visual description of even the most complex
functionalities presented through Use Cases. Well
designed activity diagrams are artifacts, by analysis
of which one can very well identify all the potential

2 Jim Heumann, Generating Test Case from Use Case, The
Rational Edge, June 2001.

Pere Tumbas, Predrag Matković, Dušan Bobera

 28 Management Information Systems
2/2008

scenarios for executing the Use Cases. They are at
the same time a suggestion for the first step in
creating Test Cases. For step two, a great help are
also the activity diagrams. Since they graphically
present all actions taking place when certain
functionality is being executed, as well as the
conditions that cause them, one can very simply
take the second step in creating Test Cases.
Looking at a Test Case from a „Black Box“
perspective, the inputs and outputs are the only
things that should be assumed. From a tester’s
perspective, each functionality and each of the
scenarios being tested are black boxes. A tester is
expected to give a detailed report showing which
Test Cases were successful, and which were not.
After testing, the tester drafts a report that suggests
which functionalities should be corrected, and
which were well implemented.

Conclusion

The aim of every approach to software
development is to minimize key risks of the
development project. The iterative approach has
allowed for the bases for testing smaller parts of
the system, from the early phases of the project,
time-wise. This, in turn allowed for more quality of
interaction with the user during the project. Since
testing starts early in the development project, the
feedback from the testing process helps to
painlessly overcome the anomalies in the project.

With the testing discipline, the RUP has given a
lot of suggestions on how to implement testing.
When defining a specific methodological

framework, it is necessary to define specific rules
for testing as well. This paper gave a suggestion to
define Test Cases based on Use Cases and the
derived artifacts to do se. By applying a clear
methodology, clear testing rules which simplify the
testing process, raise the efficiency of the
development process, and lower the costs of the
development project, are also defined. Through the
application of the RUP, testing can be seen as a
separate and independent part of the project.
According to RUP testing is invariably integrated
with other disciplines in the project by way of the
iterative approach. If Test Cases are identified well
and set up in a way suggested in this paper, the
tester can easily implement the testing process. Of
course, the suggested method is no rule to strictly
adhere to in the testing process. The great quality
of the RUP is that it defines general suggestions
that can be implemented by using a great number
of different techniques. The important thing is to
define in detail the way testing will be performed in
the implementation phase.

References
IBM Team, Rational Unified Process for Large Projects, IBM, 2005.

Jim Heumann, Generating Test Case from Use Case, The Rational Edge,
June 2001.

Paul Szymkowiak, Philippe Kruchten, Testing: The RUP Philosophy, The
Rational Edge, February 2003.

Peter Zielczynski, Traceability from Use Cases to Test Cases,
www.ibm.com/developerworks/rational/library/04/r-3217, May 2006

Pere Tumbas

University of Novi Sad
Faculty of Economics Subotica
Segedinski put 9-11
24000 Subotica
Serbia

Email: ptumbas@subotica.net

Predrag Matković

University of Novi Sad
Faculty of Economics Subotica
Segedinski put 9-11
24000 Subotica
Serbia

Email: pedja_m@ef.uns.ac.rs

Dušan Bobera

University of Novi Sad
Faculty of Economics Subotica
Segedinski put 9-11
24000 Subotica
Serbia

Email: bobera@ef.uns.ac.rs

	1. Mazikova, Hrapko.pdf
	Introduction
	1. Formation of a European Company
	1.1. Formation by means of a merger
	1.2. SE formed as a holding company, subsidiary or by transformation from a public limited-liability company

	2. Accounting for creation of a European Company
	3. Contribution of SE to the EU market
	3.1. Improvement of business environment of the EU
	3.2. Unification of management structures of companies in the EU
	3.3. Creating provisions for involvement of employees in management of an SE
	3.4. Transfer of a registered office of an SE
	3.5. Protection of the interests of minority shareholders and creditors

	Conclusion
	References

	2. Jelena Minovic.pdf
	Introduction
	1. The Program Source Code of Bivariate DVEC Model
	1.1. Definition of DVEC model
	1.2. Bivariate DVEC model

	2. The Program Source Code of Trivariate DVEC Model
	Conclusion
	References

	3. Kubascikova.pdf
	Introduction
	1. Brief history
	2. Environmental reporting
	3. Global Reporting Initiative
	4. Standards AA 1000
	5. Information needs of stakeholders
	6. Implementation of Sustainable development reporting in Slovakia
	Conclusion
	References

	4. Tumbas, Matkovic, Bobera.pdf
	Introduction
	1. Position of the Testing and Project Management Disciplines in Rational Unified Process
	2. Defining Details and Traceability of the Test Case
	Conclusion
	References

	5. Djurkovic, Vukovic, Rakovic.pdf
	Introduction
	1. Open Software Source Models
	2. Open Source Project
	3. Advantages of Open Source Approach
	4. Disadvantages of Open Source Approach
	Conclusion
	References

	6. Kares, Kriskova.pdf
	1. IAASB - The International Auditing and Assurance Standards Board
	2. The Authority Attaching to International Standards Issued by the International Auditing and Assurance Standards Board - IAASB
	3. International Standards on Auditing
	4. International Standards on Quality Control
	5. Other International Standards
	6. Strategy and work program IAASB for the period 2009 – 2011
	7. International Standards on Quality Control (ISQCs)
	8. Audits and Reviews of Historical Financial Information
	9. Assurance Engagements Other Than Audits or Reviews
	Of Historical Financial Information
	10. Related Services
	Planned Date
	References

