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 Summary 
 

The article is focused on the application of differential evolution for solving flow shop 
problem that belongs to the class of scheduling problems. The scheduling problems 
arise in diverse areas such as manufacturing systems, production planning, computer 
design, logistics etc.. Only in very special cases there exist exact polynomial 
algorithms to reach optimal solution. In most of the other cases, its computational 
complexity is NP-hard and it seems to be desirable to employ some heuristics to solve 
it.  Nowadays, the use of some methods that are based on metaheuristics is a popular 
way. One of them is a differential evolution, which belongs to the class of evolutionary 
techniques. The application of evolutionary algorithms to NP-hard problems generally 
requires a special modification of these algorithms; therefore the main object of the 
work is to adapt a canonical version of differential evolution for solving flow shop 
problem. The effectiveness of the proposed approach is compared with other 
evolutionary techniques known from the already published results. The available 
instance of flow shop Car and Rec are used for comparison. 
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Introduction  
 

Flow shop systems are known in the field of 
production logistics which is called scheduling 
theory. This theory includes complicated schedules 
e.g. production schedules and school schedules, 
transportation, personal and many others (Palúch 
& Peško, 2006).  

Next, we will introduce some basic concepts of 
production scheduling. The basic elements are: 

 

 operation – o, basic technological operation, 
which is not divisible to the partial operations, 

 job – J, is a set of operations {o1, o2, ..., on}, 
which can not be done in the same time,  

 machine – M, a device capable of performing one 
or several types of operations. 
 

Flow shop system can be basically characterized 
as systems in which the operations {o1, o2, ..., on} 
(individual operations are uninterruptiblne) of 
every job J must be processed on machines{M1, 
M2, ..., Mm} (machines are always available and they 
can process only one operation at time) in the same 
order. There are no precedence constraints among 
operations of different jobs and also the processing 
time pij, i =1,2, ...n, j =1,2, ...m, for every operation 
oi, i =1,2, ...n, on each machine Mj, j =1,2, ...m, is 
known. The problem is to find the job sequences 
on the machines which minimize the makespan, i.e. 
the maximum of the completion times of all 
operations. Makespan is the most frequently used 
criterion for flow shop and it means to minimize 

the end time of final operation on the last machine 
(Makespan - Cmax) so the whole processing time 
(objectives as to minimize mean flowtime, total 
terdiness etc.. are also possible). Other basic 
assumptions of scheduling can be found in e.g. 
(Palúch & Peško, 2006). 

Flow shop systems with two machines, where 
the aim is to minimize Cmax, can be solved by a 
polynomial Johnsons algorithm (full description in 
(Palúch & Peško, 2006) (Brezina et al., 2009)), but 
there is no polynomial algorithm for solving so that 
problems with three and more machines (except 
the special cases such as those described in (Palúch 
& Peško, 2006)). Generally, flow shop problem is 
NP- hard with number of possible schedulling (n!) 
(m-1). There are various ways to classify algorithms 
for solving so that problem, each with its own 
merits. One way to classify algorithms is by 
implementation principle (Čičková et al., 2008): 

Explicit enumeration. It leads to reconnaissance all 
possible solutions of problem, therefore is 
applicable only for problem of small size. 

Deterministic methods. These algorithms base only 
on rigorous methods of „classical” mathematics. 
Some additional information, such as gradient, 
convexity etc. is usually needed (branch and bound 
algorithm, cutting plane method, dynamic 
programming etc.). 

Stochastic methods. These algorithms work on 
probabilistic methods to solve problems. Stochastic 
algorithms work slowly and are applicable only for 
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„guessing“ (monte carlo, random search walk, 
evolutionary computation etc.). 

Combined methods. Combined methods are 
comprised by stochastic and deterministic 
composition. Various metaheuristics algorithm has 
been devised (ant colony optimization, memetic 
algorithms, genetic algorithms etc.). Metaheuristics 
consist of general search procedures whose 
principles allow them to escape local optimality 
using heuristics design. Evolutionary algorithms are 
significant part of metaheuristics. 

 
1. Differential Evolution 

 

Differential evolution belongs to the class of 
evolutionary techniques, where the best known 
representatives are genetic algorithms, but there are 
some differences e.g. an individual is created with 
the use of four parents and it is mutedet two times 
etc.. The evolutionary algorithms comprise a large 
number of nontraditional computing techniques 
whose common characteristic is that they are 
inspired by the observation of the nature processes 
(genetic algorithms, ant colony optimization, 
differential evolution, etc.), respectively from other 
disciplines (e.g. simulated annealing). Nowadays 
evolutionary algorithms are considered to be 
effective tools that can be used to search for 
solutions of optimization problems. The big 
advantage over traditional methods is that they are 
designed to find global extremes (with built-in 
stochastic component) and that their use does not 
require a priori knowledge of optimized function 
(convexity, differential etc.). 

Evolutionary algorithms differ from more 
traditional optimization techniques in that they 
involve a search from a "population" of 
individuals, not from a single one. Each individual 
represents one candidate solution for the given 
problem that is represented by parameters of 
individual. Associated with each individual is also 
the fitness, which represents the relevant value of 
objective function. A population can be viewed 
as np x d matrix (np - number of individuals in the 
population, d – number of parameter of individual). 
Every step involves a competitive selection that is 
carried out poor solutions. 

Differential evolution was introduced by Price 
and Storm (Storn & Price, 1997). Differential 
evolution, as well as other evolutionary techniques, 
works well on solving non-constrained problems 
that contain continuous variables, but nowadays 
there were developed few approaches that involve 
the solving of constrained problems with integer or 
binary variables. Varied approaches were used with 

more or less success for solving many real 
problems etc. traveling salesman problem, vehicle 
routing problem etc. (see (Brezina et al., 2009), 
(Onwubolu & Babu, 2004), (Palúch & Peško, 
2006)). 

 The principle of basic verzion of differential 
evolution can be described by following 
pseudocode: 

 
BEGIN 
SETTING of control parameters;               
INITALIZATION of population; 
       EVALUATION of each individual; 
       WHILE (STOPPING CRITERION is not 
satisfied) DO 
       FOR (each individual of the population) DO 
(REPRODUCTIVE CYCLE): 
CREATE differential vector 
CREATE trial vector 
CREATE test vector 
IF (EVALUATION of test vector)> 
(EVALUATION of current selected individual) 
THEN (SUBSTITUDE the selected individual 
with the test vector) 
ENDIF 
        ENDFOR 
        ENDWHILE 
        EVALUATE process of calculating 
END 

 

The steps of the algorithm can be briefly 
summarized as follows (according to (Zelinka, 
2002) (Onwubolu & Babu, 2004), where it is 
possible to found recommended values for 
different parameters): 

 
Setting of the control parameters. Differential 

evolution is controlled by a special set of 
parameters. Recommended values for the 
parameters are usually derived empirically from 
experiments: 

d – dimensionality. Number of parameters of 
individual (usually also number of arguments of 
objective function). 

np – population size. Number of individuals in 
population. recommended setting is 5d to 30d, 
respectively 100d, in cace the optimized funcion is 
multimodal (Zelinka, 2002). 

g – generations. Represent the maximum 
number of iteration (g is also stopping criterion). 

cr – crossover constant, cr 0,1∈ . If the cr 
value is set to 0, the mutation test vector is only a 
copy of the current (fourth) parent. If the cr value 
is set to 1, test vector will be created only by three 
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randomly selected parents and a differential 
evolution algorithm is purely stochastic. 

f– mutation constant,  f 0,1∈ . f specifies the 
level of stochastics in the evolutionary process.   
 Initialization. The population must be initialized 
at the beginning of evolutionary process. Usually 
the random initialization is used so that each 
individual represents a candidate solution of given 
problem, respectively it can be also used some 
information about the problem (if available). Each 
individual is then evaluated with the fitness (relevant 
value of objective function). 

The test of stopping condition. In its canonical form, 
the only stopping criterion is to reach the maximal 
number of iterations (represent by parameter g). 
The user may change program 
with some different type of ending the parameter, 
eg. stop evolution or reformulate the control 
parameters, if over th over the last fixed number of 
generations has not changed the value of best 
individual and so on. 

Reproductive cycle. This cycle comprise the 
crossing and mutation to create individuals for the 
next generation. For each individual xig , i =1,2, 
...np, from the population another three different 
individuals are chosen (vectors r1, r2, r3).  The 
difference of the first two vectors (r1 and r2) gives 
the differential vector d, which is multiplied by 
mutation constant f and added to vector r3. Thus, 
we get trial vector v. Formally: 

( )3, 1, 2,*t t t t
j r j r j r jx f x x= + −v  

 1,2...,j d= , 1,2...,t g=     (1) 
After the mutation process comes the 

formation of a new individual, which is also called 
test vector xtest so that one element after another is 
selected from the currently selected individual xig 
and from the trial vector v and for every pair is 
generated a random number from the interval 
<0.1>, which is compared with the crossing 
constant cr. If the generated random number is less 
than or equal to cr, to the relevant position of xtest 
comes the element of trial vector v, otherwise of 
current selected individual xig. 

Formally: 
( )3 1 2 ,  if 0,1   

,  otherwise
j

g g g
r j r j r j j

test

g
ij

x f x x rand cr j k

x
x

+ − ≤ ∨ =


= 


  (2) 

where  
1,2,...,i np= , 1,2,...,j d= , { }1,2,...,k d∈  (3) 

{ }1, 2, 3 1,2,...r r r np∈ ; 1 2 3r r r i≠ ≠ ≠  
 

where k is a random index, which always ensures a 
change of at least one parameter in the test vector. 
The value of the objective function for the test 
vector is compared to the value of objective 
function of the curent selected individual and to 
the next generation is selected the vector with the 
better objective value.  

test
cos cos

1

,  ak ( ) ( )

,  otherwise

test g
t t i

g
i

g
i

f f
+

≤


= 


x x x
x

x
   (3) 

So that process continues in each generation for 
all individuals.  The result is a new generation with 
the same number of individuals. 

Evaluation. The whole process of reproduction 
continues until the last (users specified) number of 
generations is reached. The value of the best 
individual from each generation 
is reflected to history vector, which shows the 
progression of an evolutionary process. 
 
2. Flow shop problem using 
differential evolution 

 

Since the differential evolution is an algorithm, 
which works well in the case of non-constrained 
problems with continuous variables, in applying the 
algorithm for solving NP-hard problems, is 
necessary to consider the following factors: 
 

 Selection of an appropriate representation of 
individual 

 Formulation of objective function 
 Transformation the parameters of individual to 

the real numbers 
 Transformation of unfeasible solutions 
 Setting of the control parameters of the 

differential evolution  
 

Selection of an appropriate representation of individual. 
A natural representation of individual, that is 
particularly known from genetic algorithms (where 
has been often used with success by solving much 
known traveling salesman problem), was chosen. 
In response to the flow shop problem, each 
operation is assigned with integer from 1 to n (n 
represents the number of operations), which 
represents corresponding operation in individual. 
Each individual is then represented by a d-
dimensional vector of integers, representing direct 
the order of processing operations. Then, the initial 
population is generated as follows: 

 
( ) ( ) ( )0 0

,P randpermi jx d= =   1,2,...,i np= 1,2,...,j d= (4) 
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where the function randperm (d) ensure the 
establishment of a random permutation of d 
integers, so it is the random permutation of the 
sequence of operations. Each individual in the 
population is also assigned with its fitness that 
represents maximum of the completion times of all 
operations (Makespan). 

 Formulation of objective function.  The computation 
of objective function value for an individual is 
carried out in two steps with respect the following 
facts: 

 

1. The first machine begins to process the first 
operation in sequence in time 0 and this 
operation will not proceed on the next machine 
unless its processing on first machine is done. 

2. Processing of other operations in the sequence 
is as follows: 

 

 the first machine works without downtime, i.e. 
operations are assigned in the order, which is 
determined by individual 

 the processing of relevant operation on the 
further machines is conditioned by fact that the 
machine is already free (if not, relevant 
operation waits for completion of previous 
operation on this machine) 

 and also the processing of relevant operation 
tasks on the previous machine is done (if 
no, there is a machine downtime, waiting for 
the operation). 
 

Transformation the parameters of individual to the real 
numbers. Because the differential evolution 
algorithm was originally designed to solve 
problems with continuous-time variables and the 
used natural representation consists of integer 
variables, it is desirable to transform integers to real 
numbers. The used method for transformation was 
presented in (Onwubolu & Babu, 2004) for solving 
traveling salesman problem. Let zi, i = 1, 2, ...,n 
represents an integer number. The equivalent 
continuous variable for zi is given as: 

 

3

* *51
10 1
i

i
z fr = − +

−        (5)
 

where f is given, for example. f = 200.  
 

Reverse transformation of real numbers to integers 
(used to evaluate the objective function): 

( ) ( )31 * 10 1
5*

i
i

r
z

f
+ −

=       (6) 

( )int 0,5izα = +         (7) 

 izβ α= −           (8) 
 

Transformation of unfeasible solutions. The use of 
differential evolution algorithm does not require 
the formation of feasible solution in case of natural 
representation of individual, therefore it is 
necessary to choose an appropriate method of 
transformation of the unfeasible solutions. The 
problem of infeasibility occurs in two cases: 

 

a) Parameter of individual after the transformation 
from real numbers to integers is less then 1 or 
greater then d, in this case the relevant 
parameter is replaced by new randomly 
generated parameters in range 1 to d. 

b) Created individual does not comprise a 
permutation of integers d. In this case, the 
correction approach that was presented in 
(Brezina et al, 2009) by solving vehicle routing 
problem, was used. 
 

1) Let m is the vector of parameters of the 
individual dimension of d with k different 
elements. If d - k = 0, go to step 4). Otherwise, 
go to step 2). 

2) Create the vector p (dimension d - k) of random 
permutation of such d – k elements, 
which are not included in the vector m. If the 
number of non-zero components of the vector 
p = 0, go to step 4). Otherwise, find the first 
repeated element of vector m. Let this element 
be mc and let the first nonzero element of vector 
p be pk . Set mc = pk and go to step 3). 

3) Set pk = 0 and return to the step 2). 
4) Return  m 

 

As part of the software support for experimens, 
the MATLAB 7.1 was used. Two functions were 
created: the differential evolution algorithm 
adapted for solving flow shop systems and the 
function for objective function calculation that 
calculates the value of optimized function. 

 
3. Experiments 

 

To discover the effectiveness of the presented 
techniques, the free available test data Car1  up to 
Car8 from OR library were used. 

1

                                                      
1 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/ 
(15.9.2010) 

 This Flow shop 
instances were investigated by many researchers 
who applied a variety of techniques to solve it (and 
also there is a known optimal value of objective 
function). Firstly, the 165 simulation were carried 
out to determine the effective setting of control 
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parameters f and cr (with the simultanous use of the 
set np = 300, g = 1500). The best parameters 
obtained from combining these parameters during 
experimentation are: cr = 0,1 and f = 0,05. Altroght 
those setting presents a relative low crossing rate 
and mutation, they seemed to be adequate to 
garantee evolution process. After all simulation we 
can resume that we were able to achive optimal 
solution for all instances Car. 

Further on, the test data Rec 03 up to Rec 17 
also from OR library were solved with the use of 
control parameters: cr = 0,1, f = 0,05, np = 300, g = 
4500 and the test data Rec 19 up to Rec 29 with 
the use of control parameters: cr = 0,1, f = 0,05, np 
= 500, g = 8500. For each problem three 
simulations were done. The results are given in 
Table 1: 
Table 1   Results for Rec instances

2

Problem 

 
Size Simulation1 Simulation2 Simulation3 Mean Minimum 

Rec03 20x5 1111 1111 1110 1110,67 1110 

Rec05 20x5 1245 1245 1245 1245 1245 

Rec07 20x10 1566 1566 1566 1566 1566 

Rec09 20x10 1537 1537 1537 1537 1537 

Rec11 20x10 1431 1431 1431 1431 1431 

Rec13 20x15 1935 1936 1935 1935,33 1935 

Rec15 20x15 1964 1961 1962 1962,33 1961 

Rec17 20x15 1921 1919 1909 1916,33 1909 

Rec19 
30x10 

2106 2109 2112 
2109 2106 

Rec21 30x10 2046 2046 2046 2046 2046 

Rec23 30x10 2032 2032 2032 2032 2032 

Rec25 30x15 2559 2599 2553 2570,33 2553 

Rec27 30x15 2412 2399 2410 2407 2399 

Rec29 30x15 2336 2325 2333 2331,33 2325 

 
In order to compare the before mentioned 

approach with other minimizing strategies the 
work (Davendra & Zelinka, 2008) was used. There 
were published the results of following five 
evolutionary algorithms: 

 

H-GA – Hybrid Genetic Algorithm 
OGA – Othogonal Genetic Algorithm 
IGA – Improved Genetic Algorithm 

                                                      
2 First number represents the number of operations, second 
number represents the number of machines. 

MAEA – Multiagent Evolutionary Algorithm 
SOMA – Self Organizing Migrating Algorithm  
 

The compatrision of differential evolution with 
these evolutionary approaches is given in Table 2, 
where the percentage deviations from optimal 
value for different evolutionary techniques are 
seen. 

 

Table 2   Comparison with other heuristics 
 

Proble
m 

Size Opti
mum 

H-
GA 

OG
A IGA MAE

A 
SOM

A DE 

Car1 11x5 7038 0 0 0 0 0 0 

Car2 13x4 7166 0 0 0 0 0 0 

Car3 12x5 7312 0 0 0 0 0 0 

Car4 14x4 8003 0 0 0 0 0 0 

Car5 10x6 7720 0 0 0 0 0 0 

Car6 8x9 8505 0 0 0 0 0 0 

Car7 7x7 6590 0 0 0 0 0 0 

Car8 8x8 8366 0 0 0 0 0 0 

Rec01 20x5 1247 0 0,04 0 0 0 0 

Rec03 20x5 1109 0 0 0 0 0 0,18 

Rec05 20x5 1242 0,08 0,21 0 0 0,002 0,2 

Rec07 20x10 1566 0 0,79 0 0 0,01 0 

Rec09 20x10 1537 0 0,35 0 0 0 0 

Rec11 20x10 1431 0 0,91 0 0 0 0 

Rec13 20x15 1930 0,52 1,08 0,62 0 0 0,21 

Rec15 20x15 1950 0,92 1,23 0,46 0 0,01 0,56 

Rec17 20x15 1902 1,26 2,08 1,73 0 0,02 0,37 

Rec19 30x10 2093 0,38 1,76 1,09 0,28 0,02 0,91 

Rec21 30x10 2017 0,89 1,64 1,44 0,44 0,02 1,44 

Rec23 30x10 2011 0,45 1,9 0,45 0,44 0,03 1,04 

Rec25 30x15 2513 1,03 2,67 1,63 0,43 0,03 1,59 

Rec27 30x15 2373 1,18 2,09 0,8 0,56 0,01 1,56 

 
From the last column of Table 2 it is evident 

that the percentage deviation of results obtained by 
differential evolution algorithm from the optimal 
solution was less than 1.7%. The results for the 
instance Car are consistent with the optimal 
solution in every case. Problems Rec01 up to 
Rec17 were solved with the percentage deviation 
from optimal value within the range from 0 to 
0.56% and problems Rec19 up to Rec29 within the 
range from 0.91 to 1.67%. 

Based on these results it can be stated that the 
differential evolution presents a powerfull 
approach for solving flow shop problems. To deal 
with the number of operations less than 20, the 
optimal solution was obtained in every case, in the 
case of sequencing of 20 operacions, the 
percentage deviations from the optimal solution 
were less than  1% and in case of sequencing of 30 
operations the percentage deviations from the 
optimal solution were always less than 1.7%. As it 
is seen from the Table 2, presented approach is 
fully comparable with the published results of 
other evolutionary techniques. 



Flow Shop Scheduling using Differential Evolution 

 Management Information Systems 
Vol. 5, 2/2010, pp. 008-013 13 

Conclusion 
 

Flow shop problem is one of NP-hard problems. A 
typical conflict in dealing with this kind of 
problems arises between the time available for the 
calculation and the quality of the solution. While 
the exact methods (eg, branch and bound 
algorithm) are often able to identify the optimum 
in unacceptably long time, the quality of solutions 
obtained by heuristic may be disputable. 
Nowadays, we follow the increased interest in 
methods, which are inspired by different biological 
evolutionary processes in nature. This technology 
is covered by the common name of "evolutionary 
algorithms".  But their application to constrained 
problems requires some additional modifications of 
theirs basic versions.  The paper was focused on 
application of differential evolution to flow shop 
problem. The special factors that involve the use of 
differential evolution were presented and the 
efficiency of calculations has been validated on the 
basis of publicly available instances. Based on 
presented results it can be concluded that the 
proposed approach is quite powerful in dealing 
with flow shop problem and it is fully comparable 
with the published results of other evolutionary 
techniques. 
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