

Mobile agents for distributed
decision support systems

Blaž Rodič

Article Info:

Management Information Systems,
Vol. 6 (2011), No. 1,

pp. 020-027

Received 28 September 2010
Accepted 6 December 2010

UDC 005.552.1 ; 004.65

 Summary

This article focuses on the performance of Java based mobile agents using format
translation via an intermediary XML based format. Our goal was to develop and verify
the performance of a lightweight, mobile agent based solution that would allow strong
security, portability and access to heterogeneous data resources from a mobile
platform to facilitate exchange of data between simulation models and data resources.
We have developed two types of agents: a mobile agent that functions as a server for
queries in SQL and converts the query results into XML documents and a stationary
agent acting as a client for query forwarding and conversion of received documents
into text files readable by a client application. We have tested the performance of the
agents in a distributed simulation scenario and established that the agents can be
used to connect heterogeneous simulation models and other applications, improving
their connectivity and usability.

Key words

mobile agents, XML, data filtering, data retrieval, distributed simulation, decision
support systems

1. Introduction

Recently we have witnessed an increase of research
interest in distributed information systems. New
technologies in networking have improved the
accessibility of information, whereas strong
cryptography allows us to transfer information
more safely. This has caused many changes in the
way organizations do business and improved the
mobility of people and jobs. The possibility of on-
demand access to a multitude of data and
processing resources is also very attractive for
decision support. Better access to data can improve
the accuracy and performance of business and
manufacturing simulation models used in decision
support systems (Kljajić, Bernik, & Škraba, 2000).
In turn, faster and more accurate decision support
can give a company an advantage over its
competition.

In the past, simulation was mostly used to
develop stand-alone solutions with a limited scope
and lifetime (Harrell & Hicks, 1998). However, the
use of computer simulation in various areas of
business processes has resulted in the need to
smoothly exchange data between simulation
models and data resources used in different parts
of an organization or in several organizations.
Setting up the connections between distributed
simulation models and other data sources can be a
demanding task, especially if the models run within
dissimilar simulation tools or on different
platforms and there are both continuous and

discrete event simulation (DES) models applied.
There is a clear need for solutions that would
simplify the exchange of data between simulations
and other applications over the communication
network. We have identified the following
problems:

 Lack of a common data exchange method and
format supported by all simulation tools,
decision support tools, databases, etc.

 High amount of data exchanged by tightly
coupled components of a simulation system.

 Security threats in public networks.
 Difficult control of remote components in

distributed systems.

In order to address these problems, we have
decided to develop a solution using Java mobile
agents for data retrieval and filtering and to
implement data format translation via an
intermediary XML format. In this paper we have
focused on the performance of the developed
agents in a prototype scenario involving simulation
models from real-life projects, and we aim to
answer the following questions:

 What would be the impact of security
mechanisms on system performance?

 What is the impact of data package size on
system performance?

 How much processing time is required by
different parts of code in the agents?

 What is the latency (minimum response time) of
the system?

Mobile agents for distributed decision support systems

 Management Information Systems
Vol. 6, 1/2011, pp. 020-027 21

2. Literature review

We have examined several available technologies
for development of distributed simulation systems
and the related research. One of the recent
developments in the area of distributed simulation
is web-based simulation - the use of web
technologies such as Web Services, Javascript, CGI
and Adobe Flash to facilitate access to remote
simulation models. Web-based simulation sacrifices
performance and sometimes data security in
exchange for accessibility and ease of use; however
it is very well suited for educational use
(Karagiannis, Markelis, Paparrizos, & Sifaleras,
2006). An example of a professional simulation
system that is tailored for web-based simulation is
Anylogic (XJ Technologies, 2009). Anylogic
produces stand-alone models in Java and Java
Applet models that can be stored in XML files.
Anylogic supports several modeling paradigms, and
thus allows the construction of agent based
models, system dynamics models, and discrete
event models.

A technology that has gained a lot of attention
recently, especially in the field of distributed
systems are mobile agents (MA), a subset of
software agents. The term “agent” comes from the
field of artificial intelligence, and in its broadest
sense means an entity that engages in an activity in
the name of another entity. In the software
community the term “agent” is used for
programmes that have a certain degree of
intelligence and adaptability, being able to operate
without constant supervision and less user input
(e.g. software setup wizards). Mobile agents add
another degree of autonomy – the ability to move
between computer systems. Naturally, this requires
an infrastructure that allows for transfer and
execution of code. Agents can reduce network
traffic, encapsulate protocols, execute
asynchronously and autonomously, adapt to their
environment and can be used to build robust,
failure resistant systems (Lange & Oshima, 1999).
For these reasons one of the more popular uses for
mobile agents is in the development of distributed
systems (White, 1996).

Maamar, Yahyaoui, and Mansoor (2004)
describe a system intended to facilitate the use of
ecommerce on mobile wireless devices. Problems
involved include low bandwidth, high latency and
security of transactions. In order to tackle these
problems, software agents were used in the design
and development of the system. The agents use a
proprietary method for control and exchange of
data, whereas the security mechanisms are not

described. Agent security is the main focus of
research by Chunlin and Layuan (2003). The
authors have identified mobile agents as a threat to
the security of local resources and propose the
construction of a distributed system that would
filter access to the resources via several “service
agents”. The focus of research by Qi and
Chakrabarty (2001) is the use of mobile agents for
integration and filtering of data in a distributed
sensor network. Whereas the traditional approach
would gather all available data at a central location,
here the agents move from sensor to sensor and
locally filter relevant data, reducing the data flow
by up to 90%.

3. Methodology

Despite these developments, we believe that there
is a niche for a lightweight, portable tool that
would facilitate the connection of simulation
models and data resources over the Internet and
provide data filtering as well as security. We
undertook the construction of a flexible, agent
based middleware tool that would allow us to
transfer and convert structured data (two-
dimensional tables) with local filtering, a secure,
encrypted data transfer and mobile agent
authentication. We decided to develop the software
in Java to provide portability and cross-platform
mobility of agents and decided to use standard
internet security mechanisms. As there are a
number of agent development platforms already
available, we tried to find a platform that would
provide built-in support for important
functionalities such as transport, control and secure
communications between distributed components.
We have also decided to implement data format
translation using basic XML tables as an
intermediary format.

3.1. Mobile Agent Platform

Our choice of methodology and technology was
guided by the following goals: reuse of a tested,
well documented and freely available technology,
high portability of solutions, and support for
mobile devices. We have looked at several MAS
(multi agent system) platforms, including Aglets,
Odyssey, Voyager and Grasshopper (Mangina,
2002), and decided to utilize the Grasshopper
V2.2.4 platform by IKV++ (http://www.ikv.de,
also available at: ftp://kibernetika.fov.uni-
mb.si/SoftwareAgents/) to develop the software
agents for distributed simulation support. The
Grasshopper platform has the following technical

Blaž Rodič

 22 Management Information Systems
Vol. 6, 1/2011, pp. 020-027

advantages over other MAS: it’s entirely built in
Java, it’s compatible with most computer
platforms, its source code is open, it has a good
implementation of agent transport, it provides well
developed control and security mechanisms, and
finally, it includes excellent documentation and a
free academic license. The central part of the
Grasshopper platform is a distributed processing
system, which integrates the conventional
client/server architecture and the software agents’
technology. The Grasshopper system is
implemented in Java version 2 and is one of the
first agent platforms to implement MAS
interoperability standards such as MASIF (Mobile
Agent System Interoperability Facility) (Object
Management Group consortium, 2009) and FIPA
(Foundation for Intelligent Physical Agents, 2010).

The Grasshopper platform builds on the
concepts of region, place, agency and several types
of agents (Figure 1).

REGION

AGENCY

CORE AGENCY

Services:
management
communications
transport
...

PLACE
MOBILE AGENTS

STATIONARY AGENTS





 

Region registry

Figure 1 Structure of a Grasshopper based agent system

An agency is an instance of the Grasshopper

application that hosts software agents and provides
services such as communications, registration, data
transfer, security, transport and archiving. Every
computer that we want to connect to a distributed
multi-agent system should be running at least one
agency. Every agency contains the so-called core
agency and several places where the agents can run.
Agencies handle virtually all services related to the
lifetime of agents. The concept of place aids the
grouping of agents inside agencies according to
their purpose or functionalities. A region registry
keeps track of all agencies and agents within the
region and enables communication with mobile
agents regardless of their location. The information
on agent states and events is reported to the
registry by concerned agencies. More details about
the platform can be found in the following
sections.

4. Agent system prototype

To test the software agents in the context of
distributed simulation we needed to develop a
distributed system prototype. We have decided to
use agents to connect two different simulation
models via their data resources. The prototype
scenario involved a laptop running a manufacturing
simulation that requires access to the current
results of a financial simulation running on a
company server, accessible via a public network.

The prototype application used simulation
models derived from the models used in a project
of manufacturing process reengineering. In that
project we have constructed several simulation
models: a continuous simulation model for the
financial analysis of investments and several DES
(Discrete Event Simulation) models to represent
the reengineering scenarios. The continuous
simulation model running in Powersim Studio
(Powersim Software AS, 2010) acted as the data
server, whereas the DES model running in
ProModel (ProModel Corporation, 2009) had the
role of a data client. Powersim and ProModel are
both general purpose simulation tools and are
designed for the Microsoft Windows operating
system.

Powersim and ProModel cannot be directly
connected, as they don't share a common data
interface or data format that would allow runtime
data transfer. The only viable method of
connecting Powersim and ProModel is to transfer
the data from Powersim to MS Excel workbooks
and then to text-based CSV (comma separated
values) files. We have decided to automate the
process and implement data filtering and format
translation using an intermediary format based on
XML to facilitate the addition of new data formats.
Our goal was to mask the complexity of the tasks
necessary to fetch the desired range of data from a
remote location and convert it into a desired
format. After the agents are in place, a user should
only have to enter an SQL query and specify the
output file for CSV format data. SQL queries are a
flexible and widespread method of querying
databases and filtering large amounts of data, and
were a natural choice for the data filtering method.
Most data access drives that operate via the ODBC
(Open Database Connectivity) or JDBC (Java
Database Connectivity) allow the use of standard
SQL for database queries.

We have implemented the translation of data
formats used in the prototype using the Java XML
API (application programmer interface). The
xlSQL JDBC driver (JAVA.NET, 2007) was used

Mobile agents for distributed decision support systems

 Management Information Systems
Vol. 6, 1/2011, pp. 020-027 23

to access data in MS Excel (Microsoft Excel)
workbooks accessed. We wanted to implement a
translation method that would be compatible with
mobile devices that do not run Windows or
Microsoft Office, therefore we decided to use only
Java at the client side to translate incoming data
from XML into CSV files.

4.1. Prototype System Structure

We have divided the distributed system into several
components, shown on Figure 2:

 Simulations,
 Data resources and
 Middleware.

The function of middleware is implemented by
the multi-agent system containing the following
components:

 Mobile agents,
 Stationary agents,
 Agent execution platforms (agencies),
 Central registry and control application (region

registry).

JAVA VM

agency

mobile agent

Data resource
(MS Excel)

JAVA VM

Region registryregistration

Computer 3
Computer 2

JAVA VM

agency

mobile agent

stationary agent

Data resource
(CSV files)

Computer 1

Data consumer
(ProModel DES

simulation model)

Data source
(Powersim
continous

simulation model)

registrationagent
transport

SQL queries,
XML data

Figure 2 Prototype deployment diagram

The prototype of a distributed system contains

three computers that host individual components
of the system (Figure 2). The use case scenario has
the user of “Computer 1” trying to obtain
simulation data from “Computer 2” that is acting
as a data source. “Computer 3” has the role of
central registry and administration server. The
“Computer 1” which runs the DES model contains
the file used for data transfer (from continuous
model to DES model) and an agency hosting a
stationary and a mobile agent. The stationary agent
is used to forward user queries to the mobile agent
and then receive and convert the resulting data
from the intermediate XML format to a CSV file.
The mobile agent is used to fetch the data
according to the user query (applying filtering),

convert the data to intermediary XML format and
send it to the querying stationary agent. The
computer running the continuous simulation
model (Computer 2) also contains an MS Excel file
used to save and access simulation results and an
agency that hosts the mobile agent. Finally, the
computer marked “Computer 3” holds the region
registry, which is used to control and administrate
the agents and agencies. Figure 2 also displays the
connections between components, where
continuous lines show communication links,
whereas the dashed line shows the path of mobile
agent migration. The agencies are Java applications,
running within local instances of Java VM (Java
Virtual Machine). It is possible to run several
agencies on the same computer, and several agents
within every agency. Every agent runs in its
separate thread, making the parallel execution of
several agents possible without special
mechanisms.

A mobile agent's life cycle (Figure 3) is started
by a user that would like to access data on a remote
computer that hosts a data source and can accept
mobile agents. On Figure 3 each box represents a
state of the agent, with text inside a box describing
a state, and text beside the arrow describing the
event leading to a state. The agent can be started in
any agency that is registered with the region
registry. Immediately following the start, the agent
is a passive object (not executing), and has to be
activated via agency GUI (graphical user interface).
The initial state of a mobile agent in Figure 3 is
thus “Awaiting activation”. After the activation the
agent initializes itself and asks the user (via a GUI)
what agency the user wants to send it to and what
data source to access at the destination. The user
doesn’t need to know the exact location of the
agency such as the computer name or its IP
(internet protocol) address, as it is transparently
provided by the region registry. The mobile agent
has a mobile and a stationary part. The stationary
part remains at the source agency and exists only to
allow the user to control the life cycle of the
mobile agent. After the agent is ordered to move to
the destination agency, it creates a copy of itself. It
is the copy that then moves to the remote system,
whereas the original becomes a passive object
again. Security mechanisms for remote agent
control and data access are implemented using a
shared secret. Note that "COPY" and
"ORIGINAL" are two instances of the same agent,
with identical code - the difference between them
is in the part of the code (method) executed and
the data state of the agent.

Blaž Rodič

 24 Management Information Systems
Vol. 6, 1/2011, pp. 020-027

Awaiting
activation Copy creation

Remote control

Awaiting
activation

Awaiting
activation

parameter entry deactivation

transport of the COPY

query receivedquery results returned

ORIGINAL

COPY

COPY
Figure 3 State transition diagram of the mobile agent

After the mobile agent has moved to target

agency, it connect with the data source, assumes
the role of a server and waits for incoming SQL
queries. The mobile server agent can be removed
either remotely by its owner or locally by the owner
of the hosting agency.

Figure 4 shows the life-cycle of the stationary
agent. Again, each box represents a state of the
agent, with text inside a box describing a state, and
text beside an arrow describing the event leading to
a state. The agent is started by a user that needs
access to remote data. The agent is activated during
its initialization and assumes the state “Awaiting
query” (marked bold in Figure 4). The agent then
displays a GUI dialogue requesting the remote
mobile agent address, pass phrase, the SQL query
and the destination file. The stationary agent can be
removed by its creator or the administrator of the
hosting agency. The region registry administrator
can delete the agent from the registry, thus making
it inaccessible to other agents or agencies, but
cannot physically remove or deactivate the agent.

Awaiting
query entry

Conversion of
results from
XML to CSV

Awaiting query
results

Query
processing

conversion complete

query results receivedquery entry

mobile agent call complete

Figure 4 State transition diagram of the stationary agent

5. Performance of the MA system

The prototype allows us to access a remote data
resource, fetch a defined range of data and convert
it into the desired format and save the results in a
local file. The software agent based system masks
many operations that are necessary to fetch the
desired range of data from a remote location and
convert it into desired format.

We wanted to analyze the impact of security
mechanisms on system performance. We have
executed the tests using the plain sockets protocol
and compared the results with the performance of
the system using the Secure Socket Layer protocol.
We also measured system performance using
different data package sizes in order to establish
the suitability of the system for different
applications. As we have used a third party data
access driver (xlSQL) we also wanted to test its
performance and influence on the performance of
the entire system.

The test environment contained three IBM PC
compatible network workstations. The region
registry was operating on a Windows XP system, a
DELL Inspiron 8100 laptop (COMPUTER 3 on
Figure 2). The mobile and stationary agents were
installed on a Wind ows XP SP3 system, a IBM
Thinkpad r50p laptop (COMPUTER 1 on Figure
2). The role of remote data source (COMPUTER 2
on Figure 2) was handled by another Windows XP
SP3 system, a desktop machine with an Athlon 64
3200+ CPU. All computers were connected to the
local area network via Fast Ethernet (100 Mbps)
network adapters and 100 Mbps Ethernet switches.
The software used in the experiment was MS Excel
2007, xlSQL version Y7, Grasshopper V2.2.4,
Powersim Studio 2007 and ProModel version 5.0.

Figure 5 shows the dependence of system
performance on the size of a cell range that a query
returns. To gauge the system performance, we have
measured processing time from the entry of an
SQL query to the writing of a CSV file. We have
used several different sizes of query results, from 1
to 5000 rows of data, each row containing two 64
bit numbers. The processing time includes the
transfer of the SQL query to the mobile agent
acting as a server, querying using the JDBC driver,
conversion of the resulting data range to XML,
sending XML back to the client agent and transfer
of results to the CSV file. We have established that
processing time is proportional to the query result
size, it seems to grow exponentially, and that the
use of secure mechanisms for communications
reduced the system performance by approximately
20 percent. Processing time does not drop much
below 100 ms, even for very small query sizes. We
have found out that the processing time is limited
by the latency of the xlSQL driver, as is explained
in the following paragraphs.

Mobile agents for distributed decision support systems

 Management Information Systems
Vol. 6, 1/2011, pp. 020-027 25

Figure 5 Query processing time in relation to query result

size

Figure 6 shows the same data as Figure 5, but

this time from the perspective of system
throughput - the average number of records
processed per second. The dramatic drop in system
performance as the query size gets smaller is much
more evident in this type of graph. Again, the
limiting factor is limited by the latency of the
xlSQL driver. Throughput for queries that return
one row is 12 rows per second. In contrast, for
queries that return 5000 rows, throughput is as
high as 8193 rows per second.

Figure 6 System throughput depending on the query
result size

The process of data retrieval and filtering has

several distinct parts, however we have decided to
take a closer look at the tasks specific to our
agents. We wanted to know what share of the total
processing time is taken by each of the agent’s
tasks. We have measured the average duration of
processing from the submission of a SQL query to
receipt of results in XML format and the average
duration of processing from the receipt of XML
data to the completed conversion of results into a
CSV file. The results of our measurements are
shown in Figure 7. It seems that the processing
share of client agent tasks (conversion from XML
to CSV) grows with the size of query results.
Conversion from XML to CSV format becomes

relatively slower with bigger data sets, but it’s still
much faster than the execution of the SQL query
and subsequent conversion of data to XML.

Figure 7 Time shares of the tasks of a server agent and

a client agent

As the mobile server agent relies on the xlSQL

driver to do its job, we decided to gauge the
performance of the xlSQL driver, by separately
measuring the duration of the agent’s two distinct
tasks: the execution of the received SQL query and
the conversion of the resulting data range into an
XML table. Figure 8 shows the average duration of
these tasks. These tasks involve the methods
implemented in the mobile agent, methods
implemented by the local JDBC driver xlSQL
accessing MS Excel files, but do not include the
transfer of data over the network. Network
performance in different mobile agent scenarios
may vary a lot, therefore we decided to exclude this
variable from our performance measurements. The
accuracy of results was limited due to the limited
resolution of the system clock (10 ms). Judging by
Figure 8, the duration of SQL queries is affected by
the query result size only for query result sizes of
under 1000 rows, whereas the duration of
conversion of the data set to XML increases
proportionally with the size of query results. As we
have found, the duration of an SQL query is the
limiting factor for the latency of mobile agents.
The shortest achieved duration of a query and thus
agent latency in our tests was 60 ms. Such latency
significantly limits the usability of the system for
real-time access to data, however it should be
noted that this latency is due to the xlSQL JDBC
driver and not the agents. With a different data
source and access method, the latency would
change.

Blaž Rodič

 26 Management Information Systems
Vol. 6, 1/2011, pp. 020-027

Figure 8 Average duration of tasks of the mobile agent

Our results show that the system performance

is affected by both query result size and the use of
security mechanisms, as we have expected. The
system throughput was highest when the size of
query results was several thousand rows. The
latency of the mobile server agent is affected by the
duration of SQL query. The minimal latency we
have achieved with the mobile agent during our
test was in the order of 60 ms and the smallest total
time of service (SQL query to CSV file) achieved
was approximately 100 ms, which translates to
about 10 transactions per second. That speed is
unsatisfactory for a real-time application of the
system but may be adequate for decision support
systems.

The highest achieved throughput is
approximately eight thousand records per second,
where each record contained two numbers in the
“double accuracy floating point” format with the
size of 64 bits each. This speed is in our opinion
adequate to link business simulation models and
other applications, but not appropriate to conduct
real-time data transfer between complex simulation
models or applications with intensive
communication between components. That can be
expected as Java applications still tend to be
relatively slow compared to compiled native
applications. Also, MS Excel workbooks are not
intended for the storage of large amounts of data
and cannot compete with relational databases for
speed of access. Given these limitations, we
conclude that the achieved throughput is
satisfactory.

The use of security mechanisms in data transfer
has a notable negative effect on the system
performance due to increased communication
setup and data transfer overhead of secure
protocols. Establishing a connection using SSL has
several additional steps compared to plain Sockets,
and some of these steps are computationally
intensive (encryption and key generation). SSL also

requires some additional resources on the
computer (key storage). As all transferred data is
encrypted using strong encryption, the overhead is
significant during the entire communication. Our
tests show that the use of security mechanisms
slows the system performance down by
approximately 20 percent. We believe that although
significant, the security-performance trade-off is
acceptable as the use of SSL makes the system
considerably more resistant to eaves-dropping,
impersonation, unauthorized modification of data
and “rogue” (malicious) agents.

6. Conclusions

We have developed two types of agents: a mobile
agent that functions as a server for remote queries
in SQL (Structured Query Language) and converts
the query results into XML documents and a
stationary agent acting as a client for query
forwarding and conversion of received documents
into text files readable by a client application. The
results of our research show that software agents
can be used to connect distributed simulation
models, developed with different general purpose
simulation tools and databases, thus improving the
connectivity and usability of simulation models in
distributed information systems. The use of
standard security mechanisms provide
authentication, confidentiality and integrity of
information and contribute to the safety of the
entire distributed system without a major negative
impact on system performance. As the developed
agents automate data filtering and format
conversion, as well as a part of data retrieval, the
agents also reduce the time necessary to link the
simulation models and significantly simplify this
process. By using an intermediary format we only
need to develop two converters for every new data
format, i.e. 2*n converters for conversion between
n different data formats. Without an intermediary
format, n*(n+1) converters are necessary.

Whereas the server side of the system (the
computer hosting the data resource and mobile
server agents) has to provide an agent platform and
an appropriate JDBC driver to access data, the
client side needs only the agent platform for full
functionality. Therefore any computer that can run
the Grasshopper agent platform (most systems that
support Java) can be used to easily access remote
MS Excel data with simple yet powerful SQL
queries. This significantly facilitates the integration
of different simulation models and applications
from various platforms into a distributed
information system.

Mobile agents for distributed decision support systems

 Management Information Systems
Vol. 6, 1/2011, pp. 020-027 27

However, several limitations exist within this
system. The selected data access driver (xlSQL)
introduces latency that limits the real-time
application of the agents. In the future we intend
to implement conversion to and from several other
data formats and verify the system performance
with different data formats, automate data retrieval,
and verify the performance of the system using
mobile devices running Java.

Acknowledgment

The research was financially supported by the
Slovene Ministry of education, science and sports
within the “Decision Systems in a Global e-
Economy” programme, code: PP-0586-501 and the
Young Researcher programme.

References
Chunlin, L., & Layuan, L. (2003). Combine concept of agent
and service to build distributed object-oriented system. Future
Generation Computer Systems , 19 (2), 161-171.
Cooper, A., & Reimann, R. (2003). About Face 2.0: The
essentials of interaction design. New York: John Wiley &
Sons.
Đurković, J., & Tumbas, P. (2000). Metodološki prilazi, metodi
i tehnike razvoja informacionih sistema. Subotica: Ekonomski
fakultet Subotica.
Foundation for Intelligent Physical Agents. (2010). Retrieved
July 3, 2010, from http://www.fipa.org
Galitz, O. (2002). The Essential Guide to User Interface
Desing. New York: John Wiley & Sons.
Harrell, C. R., & Hicks, D. (1998). Simulation software
component architecture for simulation-based enterprise
applications. Proceedings of the 1998 Winter Simulation
Conference (pp. 1717-1721). Piscataway: The Society for
Computer Simulation International, IEEE.
JAVA.NET. (2007). Retrieved May 3, 2007, from
https://xlsql.dev.java.net

Jošanov, B., & Tumbas, P. (2002). Softverski inžinjering. Novi
Sad: Viša poslovna škola.
Karagiannis, P., Markelis, I., Paparrizos, K., & Sifaleras, A.
(2006). E-learning technologies: employing Matlab web server
to facilitate the education of mathematical programming.
International Journal of Mathematical Education in Science
and Technology , 37 (7/15), 765-782.
Kljajić, M., Bernik, I., & Škraba, A. (2000). Simulation
Approach to Decision assessment in Enterprises. Simulation ,
75 (4), 199-210.
Lange, D. B., & Oshima, M. (1999). Seven good reasons for
mobile agents. Communications of ACM , 42 (3), 88-89.
Maamar, Z., Yahyaoui, H., & Mansoor, W. (2004). Design and
Development of an M-Commerce Environment: The E-CWE
Project. Journal of Organizational Computing and Electronic
Commerce , 14 (4), 285-303.
Mangina, E. (2002, June). Review of Software Product for
Multi-Agent Systems. Retrieved February 7, 2010, from
AgentLink: www.agentlink.org/admin/docs/2002/2002-47.pdf
Object Management Group consortium. (2009). Retrieved
September 1, 2009 , from http://www.omg.org/
Powersim Software AS. (2010). Retrieved February 27, 2010,
from http://www.powersim.com
ProModel Corporation. (2009). Retrieved February 27, 2009,
from http://www.promodel.com
Qi, H., Iyengar, S., & Chakrabarty, K. (2001). Distributed
multiresolution data integration using mobile agents. In
Proceedings of IEEE Aerospace Conference. 3, pp. 1133-
1143. Piscataway: IEEE Service Center.
White, J. (1996). Telescript technology: mobile agents. In J.
Bradshaw, Software Agents. Cambridge: AAAI Press/MIT
Press.
XJ Technologies. (2009). Retrieved December 3, 2009, from
http://www.xjtek.com

Blaž Rodič
University of Maribor, Faculty of organizational sciences
Faculty of Information Studies
Novi trg 5
SI 8000 Novo mesto
Slovenia
Email: Blaz.Rodic@fis.unm.si

	01_Josanov.pdf
	1. Introduction
	2. Web 2.0 concepts
	3. Main facts about GIS
	4. Bringing GIS to the Web 2.0 environment
	References

	02_Zehetner.pdf
	1. Introduction
	2. Different views of CRM
	Strategic CRM
	Operative CRM
	Analytical CRM
	CRM as a process
	CRM as a strategy
	CRM as a philosophy
	CRM as capability
	CRM as a technological tool

	3. Problems in the implementation of CRM
	4. Conclusion
	References

	03_Seres.pdf
	1. Introduction
	Objective
	Approach

	2. Cloud computing
	3. Software as a service
	4. Platform as a Service
	5. Features of Cloud computing
	6. Google as a part of the cloud
	6.1. Google App Engine
	6.2. Google Web Toolkit
	6.3. Google Chromium operating system

	7. Conclusion
	References

	04_Rodic.pdf
	1. Introduction
	2. Literature review
	3. Methodology
	3.1. Mobile Agent Platform

	4. Agent system prototype
	4.1. Prototype System Structure

	5. Performance of the MA system
	6. Conclusions
	Acknowledgment
	References

	Uputstvo doterano 11.03.2011.pdf
	THEMATIC FIELDS
	MANUSCRIPT REQUIREMENTS
	COPYRIGHT

	04_Rodic.pdf
	1. Introduction
	2. Literature review
	3. Methodology
	3.1. Mobile Agent Platform

	4. Agent system prototype
	4.1. Prototype System Structure

	5. Performance of the MA system
	6. Conclusions
	Acknowledgment
	References

	Uputstvo doterano 11.03.2011.pdf
	THEMATIC FIELDS
	MANUSCRIPT REQUIREMENTS
	COPYRIGHT

	Uputstvo doterano 11.03.2011.pdf
	THEMATIC FIELDS
	MANUSCRIPT REQUIREMENTS
	COPYRIGHT

	04_Rodic.pdf
	1. Introduction
	2. Literature review
	3. Methodology
	3.1. Mobile Agent Platform

	4. Agent system prototype
	4.1. Prototype System Structure

	5. Performance of the MA system
	6. Conclusions
	Acknowledgment
	References

	Uputstvo doterano 11.03.2011.pdf
	THEMATIC FIELDS
	MANUSCRIPT REQUIREMENTS
	COPYRIGHT

