

Service and Object Orientation:
Synergy in Information
Systems Development

Nebojša Taušan
Pere Tumbas

Predrag Matković

Article Info:

Management Information Systems,
Vol. 4 (2009), No. 2,

pp. 019-027

Received 12 Jun 2008
Accepted 24 April 2009

UDC 007:004 ; 004.272.45

 Summary

At the end of the 1960s, demand for increasingly complex functionalities of information
systems caused a software crisis, which was successfully surmounted by transition
from structural to object-oriented programming. Until the end of the 1990s, object was
the basis of every information system, and consequently, development methodologies
that were mostly used were object-oriented methodologies such as Rational Unified
Process – RUP.
At the end of the 1990s, a new set of information requirements was noticed. These
were requirements for transparent system integration; namely, the need for one
system to communicate with another internal or external system became one of the
most dominant needs. As a response to the newly created state, there appeared a
new concept, the service concept. The service imposes itself as a solution, which will
try, like objects at the end of 1960s, to face the newly created information
requirements.
This work will attempt to provide insight into similarities and differences between
objects and service as the basic concepts within the object and service orientation, as
well as the influence they exert on the overall information system development.

Key words

Service, web service, orientation, object, design, business process, interoperability,
development.

Introduction

Although the service concept is an ideal almost 20
years old, it has been in the focus of IT community
only since the beginning of this century. The
reason for this should be sought in the way of
information system (IS) development, i.e. in the
phase of analysis and design. Traditionally, during
development, some parts of the organization
(finance, human resources, accounting, etc.) were
analyzed, and the IS itself included parts, where
every part of IS covered a part of the organization.
Instead of the ‘silos’ approach, more modern
approaches imply the process approach, where
parts of the organization are not in the focus of
analysis, but rather its business processes, which
should be automated.

Business process can be defined as an arranged
set of activities transforming inputs into outputs.
These processes become the principal subject of
analysis and the basis of IS development. Very
quickly, it was noticed that some of the activities in
the given business process represented tasks
performed by the system user, and some activities
can be mapped into the software component.
These components can be part of our system or
part of a partner, external system, and in order to
communicate, these components must be visible

on the network. Instead of structuring the IS
following the organization scheme of the
enterprise, in accounting, finance, human
resources, and so on, the IS increasingly resembles
a collection of independent software components
which are mutually connected in the way defined
by the business process. The basic question is how
to design and develop the component, which
would be available on the network, to
communicate freely through the organization’s
firewall and which is independent of the operative
system and hardware platform.

The use of technologies that had previously
been used in distributed system development,
represented the first and logical solution, but the
shortcomings that each of them had prevented
them from responding successfully to all
requirements dictated by the new approach. As an
answer to the newly created situation, the service
concept appeared, and the web service (WS)
technology was adopted as the dominant
technology for service development.

Just as the object used to represent the key
factor of most activities of analysis, design and
implementation, the service concept has become
the basis of contemporary IS. How to develop a
service successfully, what are similarities and
differences with the object, and how to transfer

Nebojša Taušan, Pere Tumbas, Predrag Matković

 20 Management Information Systems
2/2009

experiences from object-oriented development into
service-oriented one are some questions that the
paper will deal with.

1. Web services - theoretical
background

Service as a concept appeared at the beginning of
the 1990s as a consequence of development of
technologies intended to support distributive
systems. CORBA, DCOM, and Java RMI are
technologies with the primary aim to develop
applications structured from many parts which
communicate mutually and where each of these
parts has the possibility to be executed on another
machine which is in our or external domain.

Common Object Request Broker Architecture
(CORBA) is a standard developed by Object
Management Group (OMG) enabling applications
written in different program languages to
communicate mutually, thus opening the possibility
for the application in one organization to
communicate with the application in another
organization or for the applications within the
organization to communicate transparently
regardless of the technology in which they were
developed and the operative system on which they
are performed.

Distributed Component Object Model
(DCOM) is a Microsoft standard and a direct
competitor to the CORBA technology. It implies
objects, which are distributed on the network, and
the application calls their routines when needed.
DCOM objects are tightly coupled with the
operating system and often rely on their services.

Java Remote Method Invocation (Java RMI) is a
standard developed by Sun Microsystems, Inc., and
it represents a system enabling the object
performed on one virtual machine to call the object
performed on another virtual machine.

There are numerous reasons why these
technologies are not good candidates for service
implementation. Some of these reasons include the
impossibility of communication between
components developed in different technologies,
heterogeneity of middleware on which software
components are executed, problems of passing the
company’s firewalls, property communication
standards, weaker support for the needs of large
organizations, and so on. The most used
technology for service development is currently the
web service technology.

According to the World Wide Web Consortium
(W3C), the Web service is defined as a software
system developed to support interoperable

communication between two machines through the
computer network. The web service means the
existence of the standardized interface written in
the language understandable to the machine
(WSDL) and the exchange of messages in the
SOAP format. The web service for message
transfer mostly uses HTTP, although many of
them such as SMTP, HTTPS are also supported.
The idea that the web service can be a good
candidate for implementing the service concept
became increasingly evident at the end of the
1990s, when, in order to improve communications
and data exchange, SOAP and WSDL were
standardized. Based on these two specifications, as
well as the fact that it uses the tested, open
technologies (XML, HTTP...), the web service
technology was supported by different
development tools, thus contributing to the faster
adaptation of this technology in the development
community.

The web service is independent of the program
language; it can be developed in any technology,
and from the standpoint of IS, the software and
hardware platform is not important. The web
service can be viewed as a ‘black box’ whose
functionalities can be called through the computer
network from one or more IS in the agreed way.
As their application has been increasing, a large
number of specifications have appeared around the
web service in order to arrange their use and
development. The following table gives the
overview of the most important specifications and
standards, stemming from the need to use the web
services as integral parts of information systems of
large organizations.

Table 1 Web service standards and specifications.
 Transport

HTTP/HTTPS, SMTP, UDP, TCP, …

XML
XML, XML Schema, XML encryption, XML digital signature
Messages
SOAP, WS-Addressing, MTOM, WS-Event notification, WS-
Enumeration, WS-Transfer, ...
Security
OASIS Web Services Security, WS-Secure Conversation, WS-
trust, WS-Federation,
Kerberos Token profile, Username Token profile, X.509 Token
profile, etc
Reliable Messaging Protocols
WS-Reliability, WS-Reliable Messaging
Transaction
WS-Coordination, WS-Atomic Transaction, WS-Business Activity
Metadata
WSDL, WS-Policy, WS-Metadata Exchange

Service and Object Orientation: Synergy in Information Systems Development

 Management Information Systems
2/2009 21

Each of these specifications is open, and is
maintained by one of the organizations for
standardization. Some of them are OASIS, W3C,
IEEE, etc. Owing to defined specifications
arranging every field of application, web services
have become the dominant way of developing the
service concept.

Although it is not their natural purpose, web
services can be developed and used as part of the
current IS. In these cases, they are mostly a sort of
adapter through which other systems use some of
IS functionalities for which the service was
developed. The natural environment for services is
the service-oriented architecture or SOA.

Service-oriented architecture (SOA) cannot be
defined in a simple way. The reason for this is the
fact that the concept includes the word
‘orientation’, which, like object orientation, points
to the programming style or paradigm, and the
same concept contains the word ‘architecture’,
which, in turn, points to the structure of
application, i.e. the architectural style. Having this
in mind, one of the attempts to interpret SOA is
that it represents a software system including
interoperable services capable of communicating
mutually. These interoperable services can be
implemented with different technologies, but only
web service technology is the one that can
completely face all requirements expected from the
service. Today, when we talk about SOA, in most
cases, service technology is understood as web
services. Information systems that are based on
services and whose functionality is realized by
connecting services in the way dictated by defined
business processes is called the service-oriented
information system or service-oriented application.

FFiigguurree 11 SSOOAA aapppplliiccaattiioonn

Figure 1 illustrates a SOA application. The
application includes several services marked by
letters from A to L, which are developed and
executed on different software platforms. Each of
the services can communicate with the other
services and every service can be accessed from the
network; the ways and conditions of accessing are

defined in the service interface, which can be read
if its location, i.e. its URL is known. It must be
noted that some of these services do not have to
be in our domain, i.e. under our control at all. For
example, the server, which hosts services I, J, K,
and L on the Linux/PHP platform, is part of the
information system of our business partner. Our
business process has the possibility to use the
process which is out of our domain, i.e. control
(through the activity 5) in the identical way in
which it is used in services that are in its domain,
i.e. under its control. The business process itself
does not know if the service is internal or external,
nor does it have any knowledge of the technology
in which it was developed, and these data are not
important for process execution itself.

The business process is mostly modeled by
means of the standardized Business Process
Modeling Notation (BPMN). This notation, i.e.
these diagrams have the possibility of translating
into the execution language, Business Process
Execution Language (BPEL), while the software
called process server is the environment where
translated diagrams are executed. The BPEL script
has in itself descriptions and sequences of calling
activities in the way as presented in the model,
upon script initiation, it delegates tasks to system
users and forwards service requests, which are part
of the process.

Contemporary development tools have the
possibility of automated taking out WSDL
documents from the network and automated
generation of the code of the class, through which
they will call the functions of the service. Figure 1
also shows that some of the activities of the
business process are suitable to business for which
the user of IS is directly responsible, while some
activities are appropriate to functionalities that one
(web) service implements. The very fact that
business processes are in the focus of the analysis
phase and the services are inseparable part of
process implementation, and also the fact that one
service is not only part of a single process but it
often happens that more processes share one
service, speaks about the importance of high-
quality choice and design of services which
constitute this information system.

The basic service characteristics are the
existence of contracts, loose coupling, abstraction,
reusability, autonomy, statelessness, the possibility
of discovery, and the possibility of service
composition. Although we can find detailed
descriptions of each of these characteristics in
literature, as well as advice how to realize efficiently

Nebojša Taušan, Pere Tumbas, Predrag Matković

 22 Management Information Systems
2/2009

the cited characteristics, there is still no consensus
on how to notice, select and design in the best way
the services which will meet all the cited
characteristics. Many authors have identified
activities and rules that can help to identify and
select services based on the results of analysis, and
based on business process models; however, the
generally accepted set of steps that could guarantee
the positive result still does not exist.

Similarities and differences between the object-
based and service-based paradigm will be presented
below in the paper. Comparing the basic principles
of object orientation and development principles in
general, we shall try to identify knowledge,
mechanisms and experience that are applicable to
service development or can be applied to them
with minor changes. The comparison, presented in
this way, would give development engineers,
trained on the object-oriented paradigm, guidelines
and instructions for as simple and fast transition to
the service-based paradigm as possible.

2. Comparison of the object and
service orientations

Object orientation is responsible for introducing
order into unstructured development processes.
The appearance of the object-oriented paradigm, at
the end of the 1960s, interrupted the software crisis
and fulfilled the vision of developing complete,
reusable, scalable and flexible software solutions.
Gradually, the object approach has been supported
by defined development processes, conventions of
UML languages, long-range practice, as well as a
set of development patterns, turning this approach
into the dominant development approach during
information system development. Object
orientation can be said to be the most complete
and the most mature development framework
today.

The object and service orientations try, through
their methods, techniques and rules, to fulfill
identical objectives. Both paradigms try to develop
applications which will successfully service their
users’ requirements, but at the same time, to be
simple to maintain and capable of coping
successfully with continual changes, which
characterize today’s business.

Service orientation appeared as a response to
the situation where traditional development
approaches could not respond to current
requirements in an acceptable way. Service
orientation appeared on the foundations of object
orientation and as such, has many similarities with

it; however, they look at the common concepts
such as the class, object, methods, attributes,
interface and messages differently.

One of the most noticeable differences between
the two paradigms is in the scope. Although in the
world of object orientation there is no limit
regarding the extent to which its principles can be
applied, practice shows that objects have never
exceeded the limits of the application or the group
of applications for which they were developed. The
reusability of objects has mostly been at the level of
the users’ components where the resulting
component libraries were distributed through the
applications being developed. Service orientation
and the service as its basic material concept are
indeed trying to exceed the limits of the application
itself. Services are designed primarily to include
one logically comprehensive business entity and to
render their functionalities available on the
network. Such autonomous services become parts
of business processes, both internal and external.
This was exactly the way to contribute to the
flexibility of the software solution because most
business changes are related to the business
process itself, whose modification does not require
changes on the service. Also, the fact that the
functionalities of the service, which need not be
part of our IS, can be directly mapped into the
activity of internal business process solves one of
the key requirements – the requirement for
integration of both internal and external systems.
Such a way of integration is independent of
technology on which the service is developed, and
the hardware-software platform on which the
service is executed.

In the next section, comparison of the basic
concepts, principles and techniques in the object
and service orientations is given.

Class and service

The class, as a basic concept of object orientation,
represents a tool for defining the static system
structure. In the course of program execution,
objects appear as the instances of the class. Class
can be regarded as the template based on which
objects are created, where, in the course of
execution, each of them has its state and contains
some data. The service also tries to organize the
business logic in a complete entity, but it is not
quite comparable with the class because of its
specificities. The class encapsulates information
and behavior, while the service contract defines
only public information. The class defines
attributes and operations which change them, and

Service and Object Orientation: Synergy in Information Systems Development

 Management Information Systems
2/2009 23

calling these operations, the states of the object
change. In order to maintain statelessness, services
do not implement property; a service is expected
not to have state, and to behave in the identical
way for every call. Similarities are seen more clearly
when comparing the service contract and the
interface implemented by the class. The service
contract means one or more technical service
descriptions (WSDL, definition of XML scheme,
description of WS-policy), intended for using in the
course of service execution.

Interface and service contract

The interface represents abstraction including
methods implemented in one or more classes. The
interface encapsulates the methods of classes,
rather than implementing. Each of encapsulated
methods is implemented in its own class. When
they are used, interfaces form an additional layer
over the classes and represent the points of entry
for accessing the classes. Based on the above, it can
be concluded that interfaces abstract class
implementation.

Service orientation also has a similar construct,
the service contract. The service contract is one of
the most important constructs of service
orientation; all the operations implemented by the
service can be seen through it, as well as the
necessary data for access and service call. As well as
the interface, the service contract forms an
additional layer for access to service operations and
abstract the service implementation itself. The
service contract is mostly implemented through
WSDL or Web Service Definition Language.

Method and possibilities

Classes in the object-oriented world implement
methods and attributes. Methods represent the
functionality that the classes have, while attributes
represent the data that the class uses (the term
variables is also used). The class properties represent
the predefined states that the object can have.
Methods and properties can be declared to be
private or public; it is usual to declare as public
those methods and properties which really need it.
For the service, it can be said that it has
possibilities. Possibilities are equivalent to the class
methods. The service contract cannot define
private operations, and in order to maintain
statelessness, we try not to define attributes.

Object-oriented and service-oriented
message

Communication between objects flows through
message exchange. In this case, the ‘message’
represents an abstract notion, part of the OOAD
vocabulary, and, as such, does not explain what the
messages are like in the real word. As object
orientation is mostly applied on the components
whose communications are based on the non-
standard communication protocols, messages are
usually transferred as binary communication sets,
which are exchanged synchronously. It is usually a
RPC-based mechanism. Messages exchanged
through service implementations are usually
textual. Communication can be synchronous or
asynchronous, and in this context, the message has
a more usual meaning, such as, for example, the
system of e-mail. Input and output values of (web)
service operations are structured by means of the
complex types of XML scheme. As the input and
output values of service operations can be very
complex and are always structured by the message,
input and output operation parameters are never
specified when representing services in the
diagram.

The differences are also noticeable at the level
of the granularity of the connection through which
the communication is done. Objects try to
implement very fine grained methods, in contrast
to service operations, which are, as a rule, coarse
grained. This is because the communication
between objects (whether local or distant) is
realized as persistent. Once it is established, the
connection is maintained, and data exchange is
undisturbed. Services, on the other hand, are often
supported by one of standard communication
protocols, such as HTTP, to exchange messages.
The connection which is realized is unstable, so
that data exchange is executed through sending
messages. Having this in mind, service operations
are designed in this way. As an argument, they
receive a message which contains a series of
complex types of data, and sometimes the whole
business document. As in many cases the service
represents the wrapper around a class, in Figure 2
we can see the difference between the class designs
when they are developed as object- or service-
oriented.

Nebojša Taušan, Pere Tumbas, Predrag Matković

 24 Management Information Systems
2/2009

Figure 2 (Adapted from [Erl, SOA: Principles of Service

Design, avgust 2005]).

Figure 2. illustrates how object and service

orientation influences class design. The class
designed according to object principles includes the
private part with attributes, as well as the public
one, which contains methods that are accessible.
Access to class functionalities is designed in detail,
therefore with object-oriented classes there are
many more methods and attributes where each of
them is responsible for a small job segment. These
methods are said to be fine grained. The class
designed according to service principles has no
private part, while its methods are developed in
order to include a bigger job segment. These
methods are said to be coarse grained. Service
classes are more oriented to messages, in contrast
to the object ones, which are more oriented to the
exchange of trivial data. The service contract, with
which the service is typically represented in
diagramming, includes only titles of operations
which are available through this service. The
service contract itself contains all needed data
related to the service such as location, the way of
connecting, operations, arguments of operations,
etc.

Object-oriented and service-oriented
encapsulation

In the broader sense, encapsulation denotes the
inclusion of a smaller thing within a larger thing so
that the included thing is not apparent. In object
orientation, encapsulation means hiding
information, i.e. encapsulation realizes one of the
basic object principles – hiding information from
the external world. The object is a container, and
access to it is possible only through public
methods, while everything else remains hidden.
This principle can be compared to the principle of
service abstraction, which also requires hiding
information. As well as objects, services
encapsulate logic and implementation; however,
the term ‘encapsulation’ in the service world means
what can be included by service. Encapsulation in
the object paradigm represents hiding information
about the class, while in the service paradigm, it
makes decides which part of business logic is

appropriate for implementing of the given service.
Inheritance

One of the principal ways of repeated use of the
code, in the object paradigm, is inheritance
mechanism. Two classes can form the parent-child
relationship, where the child will have all the
properties of the parent class and some additional
personal properties. This process is called
specialization. In the service paradigm, inheritance is
not used because of the existence of the principle
of service autonomy. Services do not implement
one another and therefore do not form the parent-
child relationship. During service design, it is
necessary to aim at as loose coupling as possible. It
is necessary to note that it is possible to inherit
interface in the web service technology. This can
be realized since WSDL v.2 became current
through the attribute of interface element under the
name of extends.

A well designed class of the higher level, often
called the abstract class, enables creating a number
of subclasses. Generalization is realized when the
parent class (the class of higher level) is noticed
and created, which will later be inherited by other
classes. Other classes will specialize the class of
higher level. A concept similar to generalization
and specialization in the service world is related to
granularity. As already mentioned, services do not
implement one another so there is no specialization
or generalization which appears as the relationship
between the classes. In this context, it refers to the
extent to which service operations are detailed
(service granularity). The more special service is,
the more detailed it is, i.e. granularity is at a higher
level. Establishing the right degree of granularity of
service operations is a very important task during
service design. Services whose operations are
detailed (fine grained), are referred to as
specialized, while services whose operations are
general, large (coarse grained), are referred to as
generalized.

If we try to develop service from the existing
systems, it is more sensible to create ‘larger’
services, which would include several
functionalities of the existing systems. As a rule,
one service should include operations working
mutually and thus comprising a logical, functional
entirety. In the case of service development from
the existing applications where the observed
functionalities are tight-coupling, services should
be designed so as to include functionalities of tight
coupling and make a logical entirety. These services
can be referred to as coarse grained.

When we develop services from the beginning,

Service and Object Orientation: Synergy in Information Systems Development

 Management Information Systems
2/2009 25

it is the rule to develop smaller services with a high
possibility of repeated use. The price of services
developed in this way is paid in orchestrations,
which will use these services through a series of
business processes (BPEL process). These services
can be referred to as fine grained.

When determining which functionalities the
service will include, attention must be paid to the
following:

 Cut decoupling, i.e. breaking functionalities
when the point is reached where a function
will be broken into several tightly coupled
functions. Decoupling is, therefore, done to
the level when, as the result of breaking one
function, functions appear between which
there is no dependence.

 Decoupling should be done to the level
where the resulting function is important for
the future consumer of the function. Users
usually do not need all the functions
available in service.

How strong coupling between the client and the
service is can be resolved through the following
questions:

 How simply can logic inside the service be
changed without changing the way of
accessing the service?

 How much is the client protected from the
changes coming with the increase in service
possibilities?

 How simply can a service be orchestrated
without changing the service itself?

 To what extent is the client dependent on
the service availability?

 Can the client work if the service is
unavailable?

 Is the service dependent on the state?

Polymorphism

Polymorphism means the capability of somebody
or something to appear in several forms. Through
object orientation, this concept can be realized in
several ways. When several subclasses in the
objective paradigm, inherited from one parent
class, have the same name of a method, and every
subclass applies different implementation of this
method, such a phenomenon is called
polymorphism. Each of these classes is a
specialization of a superclass (parent class), and, as
such, has different implementation. As a result of
this phenomenon, when the same message is sent
to the same method, and a different sub-class,

obtained results in different subclasses are also
different. Besides, there is the example of virtual
functions through which it is also possible to
realize the concept of polymorphism.

There is no identical designing principle in the
service paradigm. The closest to this concept is the
existence of a standardized principle of the service
contract, whose application results in the existence
of methods with similar or the same names. The
typical example is the application of CRUD
(Create, Read, Update, Delete) names in the entity
services. It should be noted that if two or more
services have the same names of methods, it does
not mean that these services can receive the same
message. Therefore, we can state that there is not a
concept in the service world which could be
compared in the right way to polymorphism in the
object world.

3. Future research

There are currently many methodologies for
software development. They can be described as a
framework for structuring, planning and control of
the information system development process. Each
of the concrete methodologies has its advantages
and disadvantages, and the choice of the
methodology depends on the nature of the system
being developed. Some of the specific
methodologies are SSADM, SCRUM, RUP and
SDLC.

Software Development Life Cycle (SDLC) is
considered to be the oldest formalized
methodology for information system development.
This methodology implies a disciplined and
methodical approach to each of the phases of the
software life cycle, where transition from one
phase to another is conditioned by ending the
previous one. Today, there are many
methodological approaches based on the
development of the software life cycle; moreover,
today the term SDLC means a family of
methodologies based on the SDLC methodology.

The vision of making an IT solution, as a set of
services rather than a set of hardware and software,
permeates the whole ITIL methodology.
Information Technology Infrastructure Library
(ITIL®) is a methodology developed by the
Government of Great Britain with the purpose of
cost and time reduction and increasing the
efficiency of information system development
process. This methodology represents a catalogue
of systematized best experiences intended for IT
organizations. The current version is v3, consisting
of five parts, where each of them contains

Nebojša Taušan, Pere Tumbas, Predrag Matković

 26 Management Information Systems
2/2009

guidelines for one or more phases of the life cycle.
This methodology is built on the process-based, i.e.
holistic view of the control of organization
management, and as such it imposes itself as the
best candidate methodology for information
system development today.

The increasing complexity of users’ and
technological requirements has influenced IT
organizations to initiate the process of selecting
and accepting a new methodology, which would
enable them to face the newly created situation
more successfully. Many indicators point to the
fact that more and more IT organizations decide to
adopt ITIL, in order to attain goals more
successfully and efficiently. However, experiences
have shown that during this process, development
groups inside the organization (those who develop
IS) still try to keep some of the tested SDLC
approaches, while the infrastructure groups (all
those who do not develop IS) easily accept the
ITIL approach. The reason for this is noticed in
the shortcomings observed in ITIL parts which are
the most important for the development groups.
The relevant issue is the design process. The
development groups who tried to develop the
system following ITIL very quickly concluded that
the procedure was incomplete and unripe. Part of
ITIL dealing with service design contains
qualitative guidelines principles and advice for
design, but there are no control mechanisms to
define clearly the beginning, the middle and the
end of the design process. In these circumstances,
development groups are not willing to give up the
well-developed and mature procedure, which they
have been using so far and with which they have
experience.

However, research efforts should not be
oriented to finding the answer whether to keep
traditional approaches and try to update them, or
yield to a new ITIL development direction, and try
to find the ways to overcome the noticed
shortcomings. Future efforts should be channeled
towards the transfer of the best from the
traditional approach to the new one, ITIL
approach, for example. The synergetic effect
produced by this procedure would provide the
development groups with a new methodology,
which would enable them to cope successfully and
continuously with the complex requirements and
complex technologies. Indeed, noticing the
similarities and differences between the object and
the service, which are most frequently the focal
point of design efforts of traditional and new
methodologies, represents the basis and starting

point in the future research.

4. Conclusion

Although the service and object orientation
represent two different approaches, we will not
make a mistake if we say that the service-oriented
approach enriches and broadens the object-
oriented one. Strategic goals, for example, attained
by the application of object orientation such as
flexibility, reusability and extensibility are
completely taken over from the service-oriented
approach. The service-oriented approach tries to
enrich goals taken over from object orientation
with a set of new goals originating from the new,
process-oriented or holistic view of the
organization for which the system is being
developed. These goals include faster return on
investment, organizational agility, system
federation, business harmonization with software
support, and the like. The analysis of these two
approaches points to the following facts: that
object orientation is now the most mature and the
most used development procedure, and therefore,
service orientation can be considered to be the
extension or enrichment of object orientation, and
that there is not yet a complete and accepted
methodological approach for service development
and service architecture. Having this in mind, as
well as the interest in accepting service orientation
as soon as possible, it is necessary to provide
development groups with guidelines and advice for
accepting the service concept, and, in perspective, a
reliable methodology for service solution
development. As the great majority of developers
have acquired experience on object orientation and
that the object is their natural central point, this
advice and guidelines should interpret services and
their properties through objects to the greatest
possible extent. They also should try to apply the
best practices of the object-oriented approach to
service-oriented one, wherever possible.

References

Dirk Krafzig, K. B. (2004). Enterprise SOA: Service-Oriented Architecture
Best Practices. (D. O'Hagan, Ed.) Upper Saddle River, NJ 07458, USA:
Prentice Hall PTR.
Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology, and
Design. Upper Saddle River: Prentice Hall PTR.
Erl, T. (2005). SOA: Principles of Service Design. Upper Saddle River:
Prentice Hall PTR.
M, N. (2007). Josuttis SOA in Practice (1st ed.). (S. St.Laurent, Ed.).
Sebastopol, CA : O’Reilly.

Service and Object Orientation: Synergy in Information Systems Development

 Management Information Systems
2/2009 27

Margolis, B., & Sharpe, J. (2007). SOA for the Business Developer:
Concepts, BPEL, and SCA. Lewisville, TX: MC Press.
Nichols, D. (2009, February 3). Establishing a Service Design Methodology.
Retrieved March 15, 2009, from itSM Solutions LLC:
http://www.itsmsolutions.com/newsletters/DITYvol6iss16.htm
Nichols, D. (2008, June 3). SDLC or ITIL? Wrong question. Retrieved
March 15, 2009, from itSM Solutions LLC:
http://www.itsmsolutions.com/newsletters/DITYvol4iss23.htm

Sanjiva Weerawarana, F. C. (2005). Web Services Platform Architecture:
SOAP, WSDL,WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More. Upper Saddle River: Prentice Hall PTR.

Nebojša Taušan
University of Novi Sad
Faculty of Economics Subotica
Segedinski put 9-11
24000 Subotica
Serbia
Email: nebojsa@ef.uns.ac.rs

Pere Tumbas
University of Novi Sad
Faculty of Economics Subotica
Segedinski put 9-11
24000 Subotica
Serbia
Email: ptumbas@ef.uns.ac.rs

Predrag Matković
University of Novi Sad
Faculty of Economics Subotica
Segedinski put 9-11
24000 Subotica
Serbia
Email: pedja_m@ef.uns.ac.rs

	1. Josanov, Vrgovic, Josanov ispravljeno.pdf
	Intriduction: The concept of digital strategy and HRM
	1. Main HRM factors in implementation of the digital strategy
	2. Digital strategy & strategic human resource management
	3. Jobs in digital companies
	4. Case studies: the digital infrastructure of 4 successful companies in Serbia
	4.1. Content provider: B92.net
	4.2. On-line bookstore: Knjizara.com
	4.3. Social network and tickets storefront: EXIT
	4.4. Vertical information provider: INI

	Conclusion: Final remarks
	References

	2. Platisa.pdf
	1. The meaning and purpose of information system functionality performances evaluation
	2. Information system functionality performances evaluation
	/
	3. Importance of information system successfulness factors
	References

	3. Tausan Tumbas, Matkovic.pdf
	Introduction
	1. Web services - theoretical background
	/Figure 1 SOA application

	2. Comparison of the object and service orientations
	Class and service
	Interface and service contract
	Method and possibilities
	Object-oriented and service-oriented message
	Object-oriented and service-oriented encapsulation
	Inheritance
	Polymorphism

	3. Future research
	4. Conclusion
	References

	4. Jablonski.pdf
	Introduction
	DEA Excel Solver
	Output oriented models
	Input oriented models
	SANNA – a spreadsheet based tool for solving MCDM problems
	WSA
	TOPSIS
	ELECTRE I and III
	PROMETHEE I and II
	MAPPAC

	Conclusions
	Acknowledgements

	References

	5. Trninic, Petkovic.pdf
	Introduction
	1. Specificities in Power Supply Activity
	2. Major Fields for Successful CRM Functions in Power Supply Enterprises
	3. Visualization in Some Fields
	4. Conclusion
	References

	6. Thomas Le Texier, Victor Dos Santos P.pdf
	Introduction
	1. The initiatives of traditional commercial players as competitive strategies
	2.1. Legal aspects and related limitations
	2.2. The failure of anti-copy protection features
	2.3. Internet access and taxes
	2.4. Interpreting the answers of the digital goods industry – An economic viewpoint

	3. The file-sharing activity and its related costs
	3.1. A taxonomy of costs associated to the file-sharing activity
	3.1.1. Production costs
	3.1.2. Technical-based diffusion costs
	3.1.3. Learning costs
	3.1.4. Searching costs

	3.2. File-sharing and commercial activities and their related cost-based structures

	4. Business opportunities and mutual valuation schemes
	4.1. The file-sharing activity as a key explanation of the difficulties of the commercial players?

	4.2. Complementarity and backward profit-oriented mechanisms
	4.3. The failure of the commercial transposition of the community-based models

	5. File-sharing, commercial activities and innovation
	5.1. The innovation of technological standards

	5.2. The role of innovation for commercial players to control their distribution networks
	6. Conclusion
	References

	Uputstvo doterano 15.11.2010l.pdf
	THEMATIC FIELDS
	MANUSCRIPT REQUIREMENTS
	COPYRIGHT

